717 research outputs found

    Viral pathogens and acute lung injury: investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic.

    Get PDF
    Acute viral pneumonia is an important cause of acute lung injury (ALI), although not enough is known about the exact incidence of viral infection in ALI. Polymerase chain reaction-based assays, direct fluorescent antigen (DFA) assays, and viral cultures can detect viruses in samples from the human respiratory tract, but the presence of the virus does not prove it to be a pathogen, nor does it give information regarding the interaction of viruses with the host immune response and bacterial flora of the respiratory tract. The severe acute respiratory syndrome (SARS) epidemic and the 2009 H1N1 influenza pandemic provided a better understanding of how viral pathogens mediate lung injury. Although the viruses initially infect the respiratory epithelium, the relative role of epithelial damage and endothelial dysfunction has not been well defined. The inflammatory host immune response to H1N1 infection is a major contributor to lung injury. The SARS coronavirus causes lung injury and inflammation in part through actions on the nonclassical renin angiotensin pathway. The lessons learned from the pandemic outbreaks of SARS coronavirus and H1N1 capture key principles of virally mediated ALI. There are pathogen-specific pathways underlying virally mediated ALI that converge onto a common end pathway resulting in diffuse alveolar damage. In terms of therapy, lung protective ventilation is the cornerstone of supportive care. There is little evidence that corticosteroids are beneficial, and they might be harmful. Future therapeutic strategies may be targeted to specific pathogens, the pathogenetic pathways in the host immune response, or enhancing repair and regeneration of tissue damage

    Bench-to-bedside review: the role of activated protein C in maintaining endothelial tight junction function and its relationship to organ injury.

    Get PDF
    Activated protein C (APC) has emerged as a novel therapeutic agent for use in selected patients with severe sepsis, even though the mechanism of its benefit is not well established. APC has anticoagulant, anti-inflammatory, antiapoptotic, and profibrinolytic properties, but it is not clear through which of these mechanisms APC exerts its benefit in severe sepsis. Focus has recently turned to the role of APC in maintaining endothelial barrier function, and in vitro and in vivo studies have examined this relationship. This article critically reviews these studies, with a focus on potential mechanisms of action

    Prognostic value of pulmonary dead space in patients with the acute respiratory distress syndrome.

    Get PDF
    A study published in the previous issue of Critical Care demonstrates that measurement of the pulmonary dead-space fraction is superior to hypoxemia as an indicator of a favorable physiologic response to prone positioning in patients with severe acute respiratory distress syndrome. These results add to the growing evidence supporting the clinical and research value of measuring pulmonary dead space in patients with acute respiratory distress syndrome and using this pulmonary physiologic end-point as one indicator of a favorable response to therapy

    Clinical review: Thinking outside the box - an iconoclastic view of current practice

    Full text link

    Coagulation-dependent mechanisms and asthma

    Get PDF

    Science review: Mechanisms of ventilator-induced injury

    Get PDF
    Acute respiratory distress syndrome (ARDS) and acute lung injury are among the most frequent reasons for intensive care unit admission, accounting for approximately one-third of admissions. Mortality from ARDS has been estimated as high as 70% in some studies. Until recently, however, no targeted therapy had been found to improve patient outcome, including mortality. With the completion of the National Institutes of Health-sponsored Acute Respiratory Distress Syndrome Network low tidal volume study, clinicians now have convincing evidence that ventilation with tidal volumes lower than those conventionally used in this patient population reduces the relative risk of mortality by 21%. These data confirm the long-held suspicion that the role of mechanical ventilation for acute hypoxemic respiratory failure is more than supportive, in that mechanical ventilation can also actively contribute to lung injury. The mechanisms of the protective effects of low tidal volume ventilation in conjunction with positive end expiratory pressure are incompletely understood and are the focus of ongoing studies. The objective of the present article is to review the potential cellular mechanisms of lung injury attributable to mechanical ventilation in patients with ARDS and acute lung injury

    Elevated PAI-1 is associated with poor clinical outcomes in pediatric patients with acute lung injury.

    Get PDF
    PurposeDeposition of fibrin in the alveolar space is a hallmark of acute lung injury (ALI). Plasminogen activator inhibitor-1 (PAI-1) is an antifibrinolytic agent that is activated during inflammation. Increased plasma and pulmonary edema fluid levels of PAI-1 are associated with increased mortality in adults with ALI. This relationship has not been examined in children. The objective of this study was to test whether increased plasma PAI-1 levels are associated with worse clinical outcomes in pediatric patients with ALI.Design/methodsWe measured plasma PAI-1 levels on the first day of ALI among 94 pediatric patients enrolled in two separate prospective, multicenter investigations and followed them for clinical outcomes. All patients met American European Consensus Conference criteria for ALI.ResultsA total of 94 patients were included. The median age was 3.2 years (range 16 days-18 years), the PaO(2)/F(i)O(2) was 141 +/- 72 (mean +/- SD), and overall mortality was 14/94 (15%). PAI-1 levels were significantly higher in nonsurvivors compared to survivors (P < 0.01). The adjusted odds of mortality doubled for every log increase in the level of plasma PAI-1 after adjustment for age and severity of illness.ConclusionsHigher PAI-1 levels are associated with increased mortality and fewer ventilator-free days among pediatric patients with ALI. These findings suggest that impaired fibrinolysis may play a role in the pathogenesis of ALI in pediatric patients and suggest that PAI-1 may serve as a useful biomarker of prognosis in patients with ALI

    Protein C as a surrogate end-point for clinical trials of sepsis

    Get PDF
    Identification of good surrogate end-points can greatly facilitate the design of clinical trials. Using data from PROWESS and ENHANCE, Shorr and colleagues explore the potential value of several plasma biomarkers for treatment trials of activated protein C for severe sepsis. Based on the framework proposed by Vasan, they tested the utility of several factors (protein C, interleukin-6, antithrombin III, prothrombin time, protein S, and d-dimers) as type 0, 1 and 2 biomarkers. Only protein C had acceptable performance characteristics as a type 2 biomarker, or surrogate end-point. The utility of protein C as a surrogate end-point for studies of severe sepsis must be validated in future prospective studies
    corecore